Quantitative estimates for Szász operators and its hybrid variant

نویسندگان

چکیده

The present article deals with the study on approximation properties of well known Sz?sz-Mirakyan operators. We estimate quantitative Voronovskaja type asymptotic formula for Sz?sz-Baskakov operators and difference between hybrid Sz?sz having weights Baskakov basis in terms weighted modulus continuity

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Baskakov-Szász type operators

Keywords: Baskakov-Szász operators Modulus of continuity Asymptotic formula Simultaneous approximation Statistical convergence Bounded variation a b s t r a c t In the present paper, we introduce generalized Baskakov-Szász type operators and study some approximation properties of these operators e.g., rate of convergence in ordinary and simultaneous approximation, statistical convergence and th...

متن کامل

Modified double Szász - Mirakjan operators preserving x

In this paper, we introduce a modification of the Szász-Mirakjan type operators of two variables which preserve f0 (x, y) = 1 and f3 (x, y) = x 2 + y. We prove that this type of operators enables a better error estimation on the interval [0,∞) × [0,∞) than the classical Szász-Mirakjan type operators of two variables. Moreover, we prove a Voronovskaya-type theorem and some differential propertie...

متن کامل

Quantitative-Voronovskaya and Grüss-Voronovskaya type theorems for Szász-Durrmeyer type operators blended with multiple Appell polynomials

In this paper, we establish a link between the Szász-Durrmeyer type operators and multiple Appell polynomials. We study a quantitative-Voronovskaya type theorem in terms of weighted modulus of smoothness using sixth order central moment and Grüss-Voronovskaya type theorem. We also establish a local approximation theorem by means of the Steklov means in terms of the first and the second order mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2021

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2104107p